A single-step, multiple-trait genomic evaluation model increase the accuracy for suckling performance in beef cows

A. Michenet^{1,2}, D Boichon³, R Saintilan^{2,4}, F Phocas⁵ & E Venot⁵ ¹Interbull, Uppsala, Sweden ² ALLICE, 149 rue de Bercy, 75012 Paris, France. ³AURIVA, Les Nauzes, 81580 Soual, France. ⁴GenEval, 78350 Jouy-en-Josas, France ⁵GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France

AURIVA

Context

- Income of livestock farmers depends greatly on the suckling performance of beef cows
- Lack of accurate selection index to improve maternal weaning weight (WWm) and milk yield (MY)
 - Testing station since 1978 (8 bulls/year)
 - French National Evaluation (IBOVAL) since 1993

Blonde d'Aquitaine breed

Objective: Assess the interest of a single-step and multiple-trait genomic model to accurately estimate breeding values for maternal suckling traits

Material and methods

Phenotypes

Direct effect 1/2 WWd Maternal effect WWw (7 months)

Station records

For weaning weight (WW) 137,943 performance records in 484 herds Mean= 285.4 kg, standard deviation= 45.1kg

For milk yield (MY) 2403 performance records in station Mean= 5.66kg, standard deviation= 1.46kg

Material and methods

Genotypes

3,007 Blonde d'Aquitaine animals truly genotyped (58%) or imputed on SNP50 BeadChip®

- 1,155 females recorded for MY (station reference population)
- 1,039 animals with WW data (farm reference population)
 - 813 candidates for selection

4613390006

Distribution of the population of candidates for selection according to their birth year and their degree of relationship with the station reference population

Material and methods

Model

$y = X\beta + Z_1u + Z_2m + Z_3p + e$

y: performance vector $|\beta$: fixed effects |u: direct genetic effects (WWd, MY) |m: maternal genetic effect (WWm) |p: permanent environmental random effect |e : residuals of the model $|X, Z_1, Z_2, Z_3$: incidence matrices for β , u, m, p respectively

Fixed effects: MY: contemporary group, calving difficulty, age of the heifer a calving WW: calf contemporary group, calf birth season, dam parity

Software:

BLUPF90 (Misztal et al., 2002) for genetic parameters, pedigree BLUP and ssGBLUP

Results

Genetic parameters

¹Heritabilities in bold on the diagonal, genetic correlations above the diagonal (standard errors in brackets)

MY and WWm are strongly linked

MY and WWd are not genetically correlated

Results

ssGBLUP Vs pedigree BLUP model increases by 12 to 16% the accuracy of EBV for WWm

Multi-trait ssGBLUP Vs ssGBLUP model increases by 16 to 24% the accuracy of EBV for WWm

Conclusion

Multiple-trait single step GBLUP evaluation for WWm and MY increases by **38%** the accuracy of EBV for maternal weaning weight compared to uni-trait pedigree BLUP.

Thank you for your attention

Allice AURIVA IN SERVICE

